Adoptive transfer of in vitro-stimulated CD4+CD25+ regulatory T cells increases bacterial clearance and improves survival in polymicrobial sepsis.
نویسندگان
چکیده
Regulatory CD4(+)CD25(+) T cells (Tregs) suppress autoimmune and inflammatory diseases through mechanisms that are only partly understood. Previous studies suggest that Tregs can suppress bacterially triggered intestinal inflammation and respond to LPS through TLRs with enhanced suppressive activity. In this study, we have used murine cecal ligation and puncture as a model of polymicrobial sepsis to explore the effects of adoptive transfer of Tregs on septic outcome. Adoptive transfer of in vitro-stimulated Tregs in both prevention and therapeutic modes significantly improved survival of cecal ligation and puncture mice. Furthermore, the effect was dependent on both the number of Tregs adoptively transferred and the presence of host T cells. Animals that received stimulated Tregs had significantly increased peritoneal mast cells and peritoneal TNF-alpha production. More importantly, adoptive transfer of in vitro-stimulated Tregs significantly improved bacterial clearance, which resulted in improved survival. Our results suggest a novel role for Tregs in sepsis.
منابع مشابه
Increased natural CD4+CD25+ regulatory T cells and their suppressor activity do not contribute to mortality in murine polymicrobial sepsis.
Regulatory T cells (Tregs), including natural CD4+CD25+ Tregs and inducible IL-10 producing T regulatory type 1 (T(R)1) cells, maintain tolerance and inhibit autoimmunity. Recently, increased percentages of Tregs have been observed in the blood of septic patients, and ex vivo-activated Tregs were shown to prevent polymicrobial sepsis mortality. Whether endogenous Tregs contribute to sepsis outc...
متن کاملBaicalin Improves Survival in a Murine Model of Polymicrobial Sepsis via Suppressing Inflammatory Response and Lymphocyte Apoptosis
BACKGROUND An imbalance between overwhelming inflammation and lymphocyte apoptosis is the main cause of high mortality in patients with sepsis. Baicalin, the main active ingredient of the Scutellaria root, exerts anti-inflammatory, anti-apoptotic, and even antibacterial properties in inflammatory and infectious diseases. However, the therapeutic effect of baicalin on polymicrobial sepsis remain...
متن کاملNumerical status of CD4+CD25+FoxP3+ and CD8+CD28- regulatory T cells in multiple sclerosis
Objective(s): Regulatory T cells, including CD4+CD25+Fox3+ and CD8+CD28- cells play an important role in regulating the balance between immunity and tolerance. Since multiple sclerosis is an inflammatory autoimmune disease, regulatory T cells are considered to be involved in its pathogenesis. In this study, we investigated the circulatory numbers of the two mentioned types of regulatory T cells...
متن کاملFunctional and Developmental Analysis of CD4+CD25+ Regulatory T Cells under the Influence of Streptococcal M Protein in Rheumatic Heart Disease
The purpose of this study was to determine the role of streptococcal M protein in naturally-occurring CD4+CD25+ regulatory T cells (nTregs) function and development in rheumatic heart disease in Iraqi patients. Streptococcus pyogenes was isolated for subsequent M protein extraction. Also, peripheral blood nTregs and CD4+ T cells were isolated by using Magnetic Cell Separation System. Tissue cul...
متن کاملNeonatal CD71+ Erythroid Cells Do Not Modify Murine Sepsis Mortality.
Sepsis is a major cause of neonatal mortality and morbidity worldwide. A recent report suggested that murine neonatal host defense against infection could be compromised by immunosuppressive CD71(+) erythroid splenocytes. We examined the impact of CD71(+) erythroid splenocytes on murine neonatal mortality to endotoxin challenge or polymicrobial sepsis and characterized circulating CD71(+) eryth...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of immunology
دوره 174 11 شماره
صفحات -
تاریخ انتشار 2005